The European NO₂ problem – insights from vehicle emission remote sensing

Oxford Air Quality Meeting 10 January 2020

David Carslaw University of York Ricardo Energy & Environment

Ricardo Energy & Environment

Outline of talk

- The European NO₂ problem, causes and consequences
- Insights from comprehensive vehicle emission remote sensing
 - Evolution of NO_x and primary NO₂ emissions
 - Effect of diesel after-treatment technology
 - Ambient temperature effects and implications
 - Vehicle mileage and emissions of NO₂
- Concluding remarks

The NO_x issue

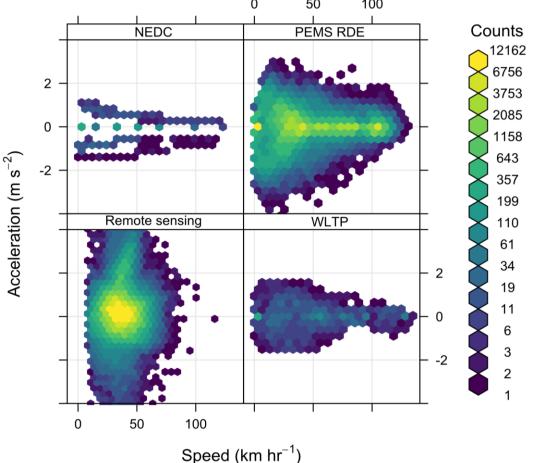
- The emission of NO_x is of key importance to a very wide range of adverse health and environmental impacts
 - Formation of ground-level ozone, secondary fine particulate, acid deposition, eutrophication, direct exposure to NO₂, ...
- The recent focus in Europe has been local scale issues related to NO₂
 - Meeting the annual mean NO₂ Limit Value of 40 μg m⁻³ (same as WHO Guideline)
 - Essentially an issue dominated by road vehicle emissions in urban areas
 - Close to roads, the emission of total NO_x and primary NO₂ are both important contributors to NO₂ concentrations
 - Real-world vehicle emission measurements are needed to understand these issues

UNIVERSITY of York

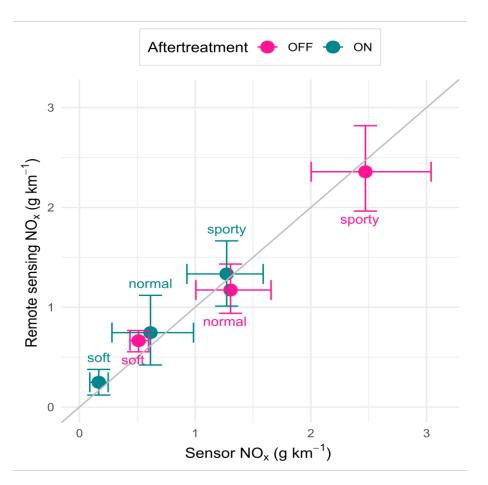
Vehicle emission remote sensing

- Have collected > 400,000 measurements
- University of Denver FEAT
- Opus RSD 5000
- NO, NO₂, NH₃, CO, HC, opacity (PM)
- Photo shows both instruments, colocated in London

Vehicle emission remote sensing

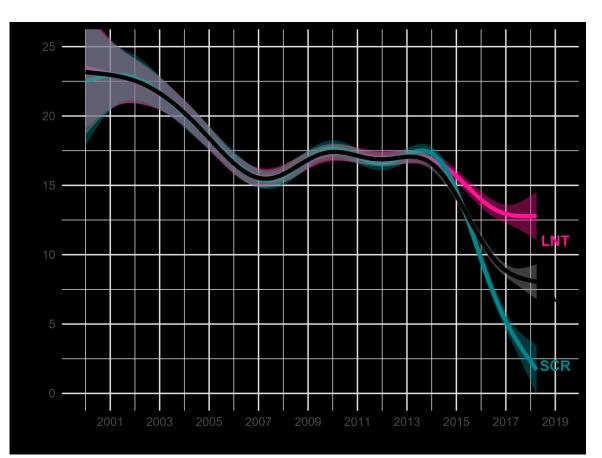

- Wide range of locations and location types throughout UK (about 20)
- Photograph each vehicle to obtain number plate
 - Detailed cross reference with SMMT-derived databases ... more than 80 vehicle characteristics
 - Recently possible to cross-refence vehicle mileage at last technical inspection (useful to understand deterioration effects)
- Additional work to identify whether Euro 6 diesel cars have LNT (Lean NO_x Traps) or SCR (selective Catalytic Reduction)
 - Identified for > 90% of vehicles
- Adopted flexible Generalized Additive Model (GAM) approach for data analysis

What driving conditions does remote sensing cover?


- Consider speed and acceleration and compare with Type Approval test cycles and PEMS
- Remote sensing has very good coverage of driving conditions
- The limitation is higher speed driving e.g. motorway / highway driving
 - ... but mostly interested in urban emissions and urban air pollution problems

Comparison with PEMS

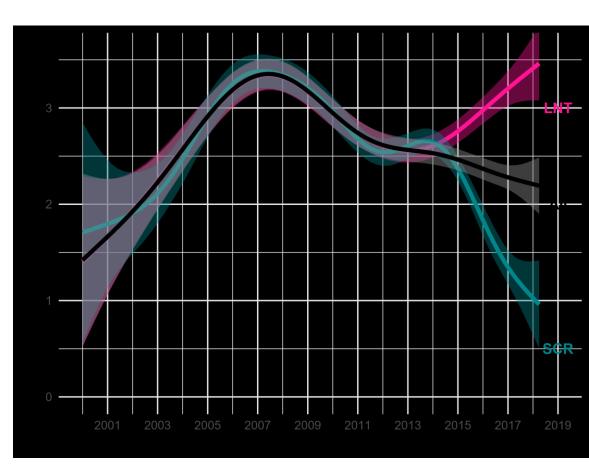
- Euro 6d-temp passenger car with Lean NO_x Trap
- Even with few measurements, remote sensing:
 - Agrees well with PEMS overall
 - Could clearly distinguish vehicle aftertreatment being on / off
 - Distinguish between driving conditions of 'soft', 'normal' and 'sporty'



UNIVERSITY of York

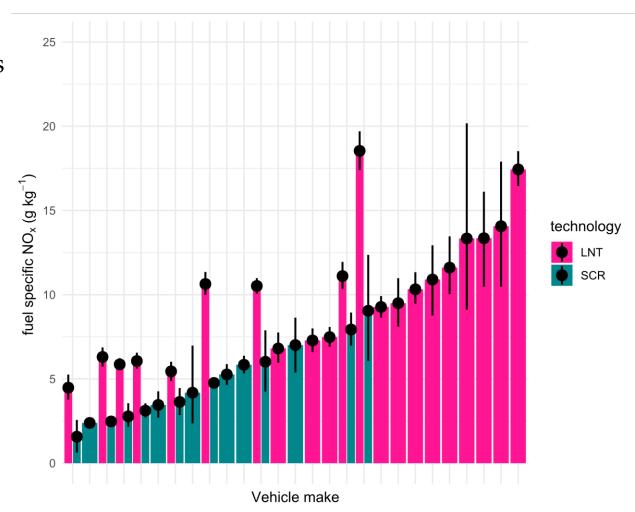
Diesel NO_x progression by main technology

- Euro 6 is not a single thing
- The introduction of Euro 6 is an important change in the history of NO_x emissions
- We see large differences between the two main technology types: LNT (Lean NO_x Traps) and SCR (Selective Catalytic Reduction)
 - Emission factor models do not differentiate between LNT and SCR

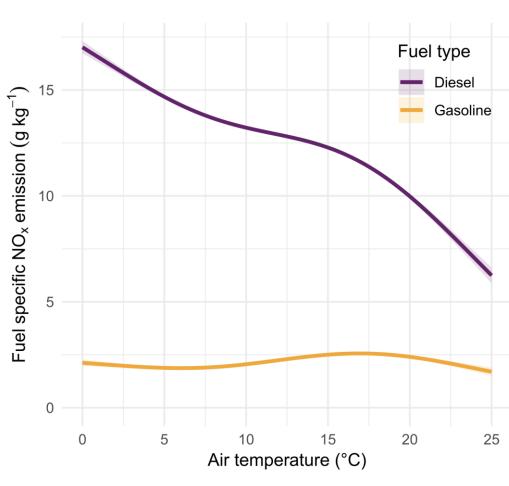


UNIVERSITY of York

Diesel NO₂ progression by main technology

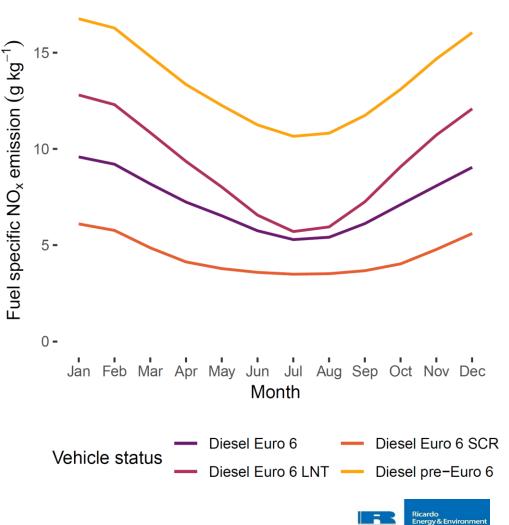

- Increase in NO₂ emissions since introduction of diesel oxidation catalysts from ~ 2000 and DPF from ~ 2005
- NO₂ is a powerful oxidant and acts to reduce CO, HC and PM
- Overall emissions of NO₂ have been decreasing since year 2007 vehicles were introduced
- LNT-equipped vehicles emit considerably more NO₂ than SCR

Diesel NO_x by main technology and vehicle make

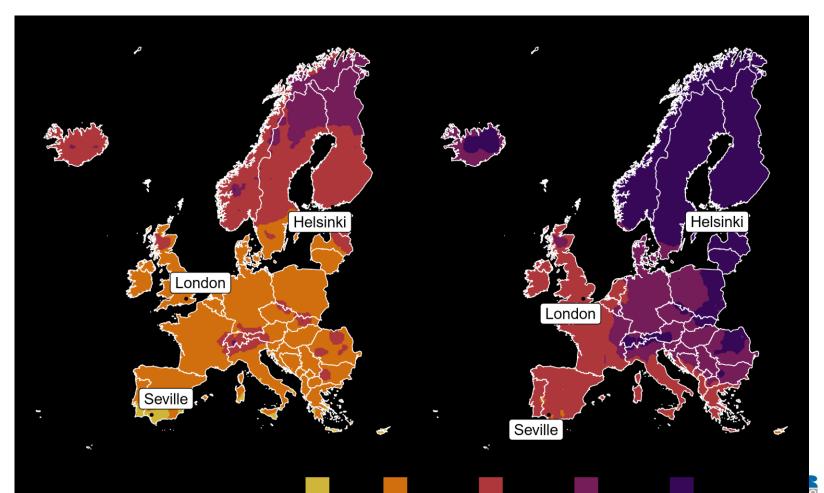

- Where manufacturers produce LNT and SCR vehicles, LNT emissions re always higher
- Next step is to consider Euro 6dtemp that can have LNT + SCR

Effect of ambient temperature – broad view

- Consider all light duty diesel vehicles
- Large range of site types, ambient temperatures, driving conditions
- Split between gasoline / diesel
- Strong temperature dependence for light duty diesel vehicles – separate from any cold start effects

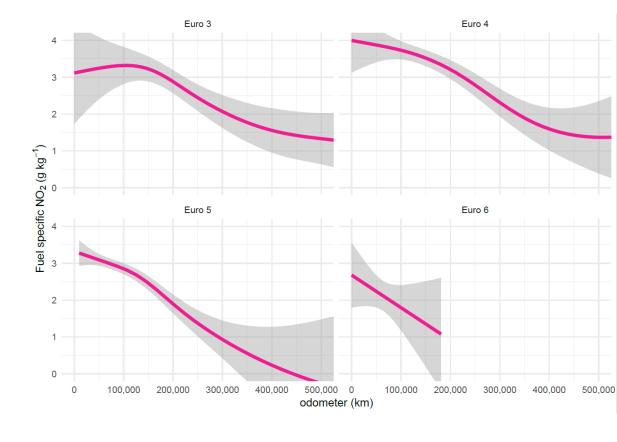


Grange, S.K., Farren, N.J., Vaughan, A.R., Rose, R.A. and D.C. Carslaw (2019). Strong temperature dependence for light-duty diesel vehicle NO_x emissions. *Environmental Science & Technology*. 53, 6587–6596. https://doi.org/10.1021/acs.est.9b01024.



Effect of ambient temperature

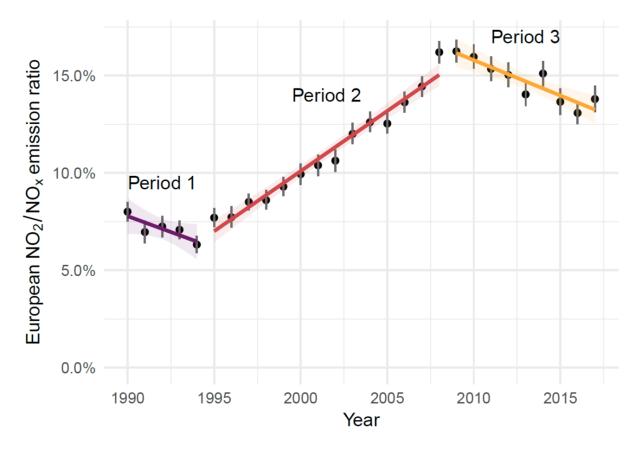
- Increased use of Euro 6 SCR diesels could have important implications
- Important for air quality ...
 - Low temperatures can lead to less efficient dispersion (stable atmosphere)
 - Increased emissions and less efficient dispersion → increased concentrations
 - Should lead to a more rapid decrease in NO_x than we currently think and especially under winter episode conditions



Ambient temperature 'penalty' across Europe – annual and winter

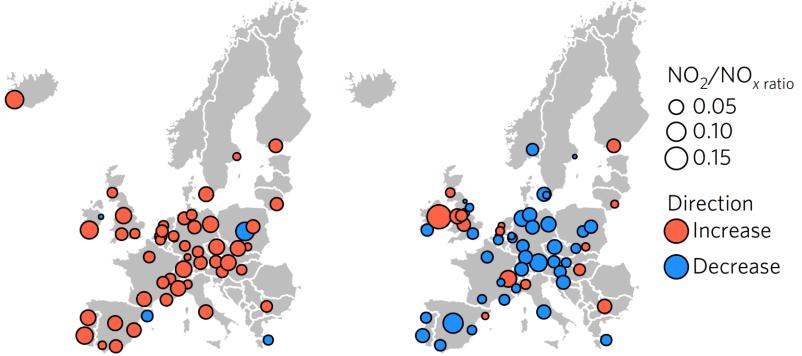
Effect of vehicle mileage on emissions of NO₂ from diesel cars

- Emissions of NO₂ decrease with increasing vehicle mileage*
 - Catalyst deactivation, other factors
- Emission factors do not account for this effect
- Could lead to pessimistic future projections of ambient NO₂ concentrations (f-NO₂ assumed to be too high)
 - ... where it is most important i.e. close to roads


*Carslaw, D.C., Farren, N.J., Vaughan, A.R., Drysdale, W. S., Young, S. and J. D. Lee The diminishing importance of nitrogen dioxide emissions from road vehicle exhaust (2019), *Atmospheric Environment:* X. Vol. 1, 100002.

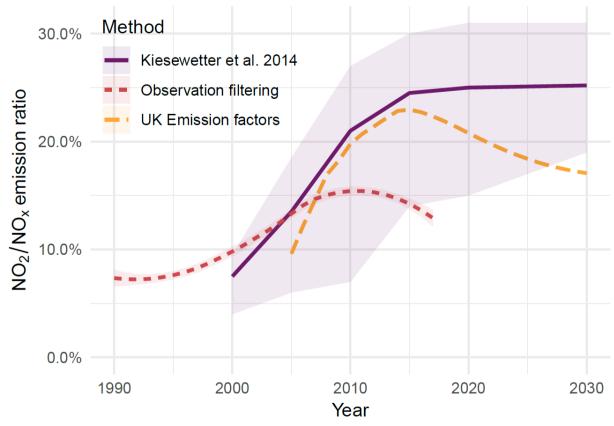
UNIVERSITY of York

Decreasing primary NO₂ across Europe


- Consider ambient roadside measurements in 61 urban areas
 - > 300 million hourly measurements
- Estimate mean traffic f-NO₂
- Clear decrease around 2009/2010

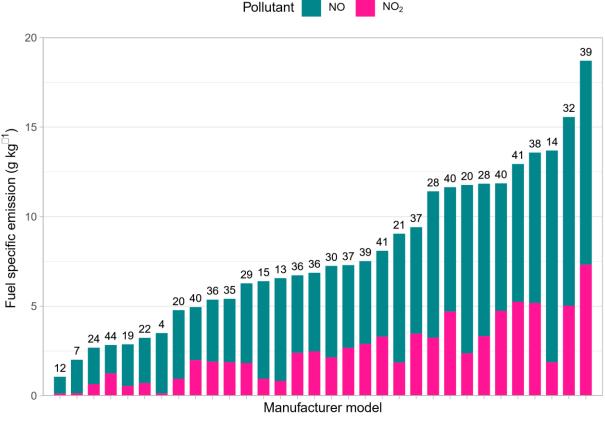
Primary NO₂ is *decreasing* across Europe

- Up to around 2010 primary NO₂ was increasing (left plot); post 2010 (right plot) there are clear decreases*
- Could lead to pessimistic future projections of ambient NO₂ concentrations



*Grange, S. K. Lewis, A. C., Moller, S. J. and D. C. Carslaw (2017) 'Lower vehicular primary emissions of NO₂ in Europe than assumed in policy projections', *Nature Geoscience*, 10(12), pp. 914–918.

Comparison with emission factor models


- Observed f-NO₂ considerably less than EMISIA/ COPERT/ HBEFA factors
- Factors do not take account of mileage deterioration effects on emissions of NO₂
- Remote sensing data is useful in this respect

Amount of NO_x that is NO₂ for Euro 6b diesel cars

- Show by (anonymised) manufacturer
- Very large range in overall NO_X performance
- Can have low total NO_x and low proportion of NO₂
- Very low absolute emissions of NO₂ become irrelevant from an air quality perspective

*Carslaw, D.C., Farren, N.J., Vaughan, A.R., Drysdale, W. S., Young, S. and J. D. Lee The diminishing importance of nitrogen dioxide emissions from road vehicle exhaust (2019), *Atmospheric Environment:* X. Vol. 1, 100002.

Concluding remarks

- The European NO₂ problem two principal causes:
 - Total NO_x emissions from light duty vehicles have not reduced as expected
 - Increased emissions of direct NO₂ due to DOC / DPF
- Emissions of NO_x and NO₂ have peaked
 - Large differential performance by manufacturer in current fleet
- Effect of ambient temperature is (and has been) important and has implications for future projections of NO_x
- As diesel car mileage increases, NO₂ emissions decrease and are now much lower than currently assumed in emission factor models
 - What about other vehicles?

Concluding remarks

- Need to think about other impacts
 - The wider impacts of NO_x
 - Emissions of ammonia unlike agricultural sources, emitted with — NO_x and a more effective route to secondary particulate?
 - Move away from diesel and consequences for CO₂

Acknowledgements

- Dr Rebecca Rose, Ricardo Energy & Environment
- Dr Naomi Farren, Dr Adam Vaughan, University of York
- Dr Stuart Grange, EMPA, Zurich

Early 'remote sensing' measurements at the Warren Spring Laboratory (predecessor to Ricardo Energy & Environment) from the early 1960s

